Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Commun ; 13(1): 4888, 2022 08 19.
Article in English | MEDLINE | ID: covidwho-2000886

ABSTRACT

Efforts to cure HIV have focused on reactivating latent proviruses to enable elimination by CD8+ cytotoxic T-cells. Clinical studies of latency reversing agents (LRA) in antiretroviral therapy (ART)-treated individuals have shown increases in HIV transcription, but without reductions in virologic measures, or evidence that HIV-specific CD8+ T-cells were productively engaged. Here, we show that the SARS-CoV-2 mRNA vaccine BNT162b2 activates the RIG-I/TLR - TNF - NFκb axis, resulting in transcription of HIV proviruses with minimal perturbations of T-cell activation and host transcription. T-cells specific for the early gene-product HIV-Nef uniquely increased in frequency and acquired effector function (granzyme-B) in ART-treated individuals following SARS-CoV-2 mRNA vaccination. These parameters of CD8+ T-cell induction correlated with significant decreases in cell-associated HIV mRNA, suggesting killing or suppression of cells transcribing HIV. Thus, we report the observation of an intervention-induced reduction in a measure of HIV persistence, accompanied by precise immune correlates, in ART-suppressed individuals. However, we did not observe significant depletions of intact proviruses, underscoring challenges to achieving (or measuring) HIV reservoir reductions. Overall, our results support prioritizing the measurement of granzyme-B-producing Nef-specific responses in latency reversal studies and add impetus to developing HIV-targeted mRNA therapeutic vaccines that leverage built-in LRA activity.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 Vaccines , COVID-19 , HIV Infections , HIV-1 , BNT162 Vaccine , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Granzymes , HIV Infections/immunology , Humans , RNA, Messenger/genetics , RNA, Messenger/therapeutic use , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , Virus Latency , mRNA Vaccines , nef Gene Products, Human Immunodeficiency Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL